Research Papers

  • Towards a Goal-oriented Agent-based Simulation framework for High-Performance Computing [link]
    Authors: Dmitry Gnatyshak, Luis Oliva-Felipe, Sergio Álvarez-Napagao, Julian Padget, Javier Vázquez-Salceda, Dario Garcia-Gasulla, Ulises Cortés
    Abstract: Currently, agent-based simulation frameworks force the user to choose between simulations involving a large number of agents (at the expense of limited agent reasoning capability) or simulations including agents with increased reasoning capabilities (at the expense of a limited number of agents per simulation). This paper describes a first attempt at putting goal-oriented agents into large agent-based (micro-)simulations. We discuss a model for goal-oriented agents in High-Performance Computing (HPC) and then briefly discuss its implementation in PyCOMPSs (a library that eases the parallelisation of tasks) to build such a platform that benefits from a large number of agents with the capacity to execute complex cognitive agents.
    In: Artificial Intelligence Research and Development: Proceedings of the 22nd International Conference of the Catalan Association for Artificial Intelligence. Vol. 319. IOS Press, 2019.

  • A Visual Distance for WordNet [link]
    Authors: Raquel Pérez-Arnal, Armand Vilalta, Dario Garcia-Gasulla, Ulises Cortés, Eduard Ayguadé, Jesus Labarta
    Abstract: Measuring the distance between concepts is an important field of study of Natural Language Processing, as it can be used to improve tasks related to the interpretation of those same concepts. WordNet, which includes a wide variety of concepts associated with words (i.e., synsets), is often used as a source for computing those distances. In this paper, we explore a distance for WordNet synsets based on visual features, instead of lexical ones. For this purpose, we extract the graphic features generated within a deep convolutional neural networks trained with ImageNet and use those features to generate a representative of each synset. Based on those representatives, we define a distance measure of synsets, which complements the traditional lexical distances. Finally, we propose some experiments to evaluate its performance and compare it with the current state-of-the-art.

  • Full-Network Embedding in a Multimodal Embedding Pipeline [link]
    Authors: Armand Vilalta, Dario Garcia-Gasulla, Ferran Parés, Eduard Ayguadé, Jesus Labarta, Ulises Cortés, Toyotaro Suzumura
    Abstract:The current state-of-the-art for image annotation and image retrieval tasks is obtained through deep neural networks, which combine an image representation and a text representation into a shared embedding space. In this paper we evaluate the impact of using the Full-Network embedding in this setting, replacing the original image representation in a competitive multimodal embedding generation scheme. Unlike the one-layer image embeddings typically used by most approaches, the Full-Network embedding provides a multi-scale representation of images, which results in richer characterizations. To measure the influence of the Full-Network embedding, we evaluate its performance on three different datasets, and compare the results with the original multimodal embedding generation scheme when using a one-layer image embedding, and with the rest of the state-of-the-art. Results for image annotation and image retrieval tasks indicate that the Full-Network embedding is consistently superior to the one-layer embedding. These results motivate the integration of the Full-Network embedding on any multimodal embedding generation scheme, something feasible thanks to the flexibility of the approach.
    In: 2nd Workshop on Semantic Deep Learning (SemDeep-2) at the 12th International Conference on Computational Semantics (IWCS) 2017

  • Building Graph Representations of Deep Vector Embeddings [link]
    Authors: Dario Garcia-Gasulla, Armand Vilalta, Ferran Parés, Jonatan Moreno, Eduard Ayguadé, Jesus Labarta, Ulises Cortés, Toyotaro Suzumura
    Abstract: Patterns stored within pre-trained deep neural networks compose large and powerful descriptive languages that can be used for many different purposes. Typically, deep network representations are implemented within vector embedding spaces, which enables the use of traditional machine learning algorithms on top of them. In this short paper we propose the construction of a graph embedding space instead, introducing a methodology to transform the knowledge coded within a deep convolutional network into a topological space (i.e. a network). We outline how such graph can hold data instances, data features, relations between instances and features, and relations among features. Finally, we introduce some preliminary experiments to illustrate how the resultant graph embedding space can be exploited through graph analytics algorithms.
    In: 2nd Workshop on Semantic Deep Learning (SemDeep-2) at the 12th International Conference on Computational Semantics (IWCS) 2017

  • An Out-of-the-box Full-network Embedding for Convolutional Neural Networks [link]
    Authors: Dario Garcia-Gasulla, Armand Vilalta, Ferran Parés, Jonatan Moreno, Eduard Ayguadé, Jesus Labarta, Ulises Cortés, Toyotaro Suzumura
    Abstract: Transfer learning for feature extraction can be used to exploit deep representations in contexts where there is very few training data, where there are limited computational resources, or when tuning the hyper-parameters needed for training is not an option. While previous contributions to feature extraction propose embeddings based on a single layer of the network, in this paper we propose a full-network embedding which successfully integrates convolutional and fully connected features, coming from all layers of a deep convolutional neural network. To do so, the embedding normalizes features in the context of the problem, and discretizes their values to reduce noise and regularize the embedding space. Significantly, this also reduces the computational cost of processing the resultant representations. The proposed method is shown to outperform single layer embeddings on several image classification tasks, while also being more robust to the choice of the pre-trained model used for obtaining the initial features. The performance gap in classification accuracy between thoroughly tuned solutions and the full-network embedding is also reduced, which makes of the proposed approach a competitive solution for a large set of applications.

  • Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm [link]
    Authors: Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé, Jesús Labarta, Ulises Cortés, Toyotaro Suzumura
    Abstract: We introduce a community detection algorithm (Fluid Communities) based on the idea of fluids interacting in an environment, expanding and contracting as a result of that interaction. Fluid Communities is based on the propagation methodology, which represents the state-of-the-art in terms of computational cost and scalability. While being highly efficient, Fluid Communities is able to find communities in synthetic graphs with an accuracy close to the current best alternatives. Additionally, Fluid Communities is the first propagation-based algorithm capable of identifying a variable number of communities in network. To illustrate the relevance of the algorithm, we evaluate the diversity of the communities found by Fluid Communities, and find them to be significantly different from the ones found by alternative methods.
    In: Complex Networks 2017, 6th International Conference on Complex Networks and Their Applications,

  • On the Behavior of Convolutional Nets for Feature Extraction [link]
    Authors: Dario Garcia-Gasulla, Ferran Parés, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé, Jesús Labarta, Ulises Cortés, Toyotaro Suzumura
    Abstract: Deep neural networks are representation learning techniques. During training, a deep net is capable of generating a descriptive language of unprecedented size and detail in machine learning. Extracting the descriptive language coded within a trained CNN model (in the case of image data), and reusing it for other purposes is a field of interest, as it provides access to the visual descriptors previously learnt by the CNN after processing millions of images, without requiring an expensive training phase. Contributions to this field (commonly known as feature representation transfer or transfer learning) have been purely empirical so far, extracting all CNN features from a single layer close to the output and testing their performance by feeding them to a classifier. This approach has provided consistent results, although its relevance is limited to classification tasks. In a completely different approach, in this paper we statistically measure the discriminative power of every single feature found within a deep CNN, when used for characterizing every class of 11 datasets. We seek to provide new insights into the behavior of CNN features, particularly the ones from convolutional layers, as this can be relevant for their application to knowledge representation and reasoning. Our results confirm that low and middle level features may behave differently to high level features, but only under certain conditions. We find that all CNN features can be used for knowledge representation purposes both by their presence or by their absence, doubling the information a single CNN feature may provide. We also study how much noise these features may include, and propose a thresholding approach to discard most of it. All these insights have a direct application to the generation of CNN embedding spaces.
    In: Journal of Artificial Intelligence Research (JAIR), Special Track on Deep Learning, Knowledge Representation, and Reasoning, Vol. 61, 563-592, 2018.